અનંત લંબાઈના અને વિધુતભારની રેખીય ઘનતા વાળા સુરેખ તારથી ઉદ્ભવતા વિધુતક્ષેત્રનું સૂત્ર મેળવો.
સમાન રેખીય વિદ્યુતભાર ધનતા $\lambda$ ધરાવતા એક અનંત લંબાઈના પાતળા સુરેખ તારને આકૃતિમાં દર્શાવ્યો છે.
જો $O$ ને કેન્દ્ર અને $OP$ જેટલી ત્રિજ્યા તારની આસપાસ $P$ ને ફેરવીએ તો $P, P', P"...$ જેવાં બિદુઓ પરિધ પર મળે. આ બધા બિદુઓ પાસે વિદ્યુતક્ષેત્ર સમાન છે તેથી તે સમતુલ્ય છે.
દરેક બિંદુએ વિદ્યુતક્ષેત્રની દિશા $\lambda>0$ માટે બહારની તરફ અને $\lambda<0$ માટે અંદરની તરફ ત્રિજ્યાવર્તી હશે.
તાર અનંત લંબાઇનો હોવાથી વિદ્યુતક્ષેત્ર તારની લંબાઈ પર $P$ના સ્થાન પર આધારિત નથી.
વિદ્યુતક્ષેત્રની ગણતતરી કરવા માટે આકૃતિ $(b)$ માં દર્શાવ્યા અનુસાર એક નળાકાર ગોસિયન સપાટી વિચારો. તાર પરના દરેક બિદુઓ વિદ્યુતક્ષેત્ર ત્રિજ્યાવર્તી હોવાથી, નળાકાર ગોસિયન સપાટીના બે છેડાઓમાંથી પસાર ફલક્સ શૂન્ય હોય છે.
$(\because \overrightarrow{ E } \perp \overrightarrow{ S }$ જ્યાં $S$ ક્ષેત્રફળ)
નળાકારની વક્રસપાટી દરેક બિદુએ $\overrightarrow{ E }$ લંબ છે અને સમાન છે અને નળાકારની વક્રસપાટીના ક્ષેત્રફળને સમાંતર છે.
$\phi= E \times 2 \pi r l$
રેખીય વિદ્યુતભારની ઘનતા $\lambda$ હોવાથી $l$ લંબાઈ પરનો વિદ્યુતભાર $=\lambda l$
$\therefore$ ગોસના નિયમ મુજબ,
$E \times 2 \pi r l=\frac{\lambda l}{\epsilon_{0}}$
$\therefore E =\frac{\lambda}{2 \pi \epsilon_{0} r}$અથવા $E =\frac{2 k \lambda}{r}$ જ્યાં $k=\frac{1}{4 \pi \in_{0}}$સદીશ સ્વરૂપમાં $\overrightarrow{ E }=\frac{\lambda}{2 \pi \epsilon_{0} r} \cdot \hat{n}$
જ્યાં $\hat{n}$ એ તાર પરના બિદુથી લંબ એવો ત્રિજ્યાવર્તી એકમ સદિશ છે.
$R$ ત્રિજયા ધરાવતા વિદ્યુતભારીત વાહક ગોળીય કવચના કેન્દ્રથી $\frac{{3R}}{2}$ અંતરે વિદ્યુતક્ષેત્ર $E\; V/m$ છે. તેના કેન્દ્રથી $\frac{R}{2}$ અંતરે વિદ્યુતક્ષેત્ર કેટલું થાય?
$\mathrm{R}$ ત્રિજ્યાના ગોળાનો વિચાર કરો કે જેના પર વિધુતભાર ઘનતાનું વિતરણ $p\left( r \right){\rm{ }} = {\rm{ }}kr,{\rm{ }}r \le R{\rm{ }} = {\rm{ }}0$ અને $r\, >\, R$.
$(a)$ $\mathrm{r}$ જેવાં અંતરે આવેલાં બધા બિંદુઓએ વિધુતક્ષેત્ર શોધો.
$(b)$ ધારોકે, ગોળા પરનો કુલ વિધુતભાર $2\mathrm{e}$ છે જ્યાં $\mathrm{e}$ એ ઇલેક્ટ્રોન પરનો વિધુતભાર છે. બે પ્રોટોન્સને કયાં જડિત કરી ( મૂકી ) શકાય કે જેથી તેમની દરેક પર લાગતું બળ શૂન્ય છે. એવું ધારી લો કે, પ્રોટોનને દાખલ કરવાથી ઋણ વિધુતભાર વિતરણમાં કોઈ ફેરફાર થતો નથી.
કુલંબના નિયમ પરથી ગાઉસનો પ્રમેય સમજાવો.
$R$ ત્રિજ્યાના એક અવાહક ગોળાના કદ પર વિદ્યુતભાર $Q$ સમાન રીતે વિતરણ પામેલો છે. $b$ ત્રિજ્યા $(b > R)$ ની પાતળી ધાતુની કવચ વડે ગોળાની આજુબાજુ $-Q$ વિદ્યુતભાર છે. કવચ અને ગોળા વચ્ચેની જગ્યા હવાથી ભરેલી છે. નીચેના પૈકી કયો આલેખ વિદ્યુતક્ષેત્રને સંલગ્ન સાચી રજૂઆત દર્શાવે છે ?
$R$ ત્રિજયાનો નકકર ગોળા પર સમાન રીતે વિદ્યુતભાર ફેલાયેલો છે.તો વિદ્યુતક્ષેત્ર $(E)$ અને કેન્દ્રથી અંતર $r$ વચ્ચેનો સંબંધ શું થાય? (r < R)